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Abstract. A one-dimensional model of a metal is generalized by assigning a component 
index to the electron creation and annihilation operators. In the limit in which the number 
of components n goes to infinity it is found that a mean-field-type phase transition occurs 
at a finite temperature even for short-ranged interactions. It is shown that this result is not 
in contradiction with general theorems concerning ODLRO. 

1. Introduction 

The model of a one-dimensional metal investigated by Bychkov er a/ (1966) and more 
recently by Menyhard and Solyom (1973), Solyom (1973) and others (Fukuyama er a1 
1974, Luther and Emery 1974) cannot be solved exactly-except for a very special strong 
coupling case (Luther and Emery 1974)-and until now no completely satisfactory 
approximation scheme has been set up for its treatment. Therefore it is of some interest 
to construct generalized versions of the model which are solvable in a limiting case. 
Namely, we will assign a new component index to the electron creation and annihilation 
operators and investigate the limit in which the number of components n goes to infinity. 

The resulting model exhibits a phase transition in the sense that ODLRO sets in at 
some finite temperature for attractive short-ranged interactions ; the nature of the phase 
transition depends on the way the interaction potential is generalized. The possibility 
of a phase transition in one dimension with short ranged interactions is traced back to 
the fact that in the n -, oc limit of the theory all fluctuations vanish and the mean-field 
behaviour becomes exact. For any finite n, however, ODLRO should be lacking. The 
Ginzburg-Landau free energy functional of the problem is used to demonstrate that 
such a result cannot be obtained by a l/n expansion starting from the n + oc: result. 
This is connected with the fact that k values lying in the range0 < k c l / n  are responsible 
for destroying order. Bogolyubov’s (1970) inequality, as used by Hohenberg (1967) in 
establishing the argument against two- and one-dimensional superconducting order, is 
shown not to be in contradiction with the above results. 

2. The model and the n + GQ limit 

For the details of the original model we refer to Menyhard and Sblyom (1973). The 
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where a& creates an electron of momentum k, spin component a and component i. 
k ,  is the Fermi momentum and all the k ,  , k , ,  k,, k ,  are near + k , .  L is the linear extension 
of the system and ck = k 2 / 2 m  -p. The commutation rules are 

( a & i ,  a k ’ p , )  = 6kk’6ap6i j  ( a k a i ,  a k ’ p j }  = 0. 

No physical interpretation of the index i will be discussed here. For such a possibility 
see Efetov and Larkin (1974). 

The interaction potentials g l i j k l ( k l ,  . . . , k,) ( g 2 i j k l ( k l , .  , . , k4)) will be chosen to contain 
factors of two Kronecker deltas of the component indices and of constants g l ( g 2 )  which 
correspond to interactions with momentum transfer 2 k ,  (0) in a narrow shell specified 
by oD around the Fermi ‘surface’ and zero outside. (A third type of coupling constant 
corresponding to the interaction of electrons on one side of the Fermi ‘surface’ with 
momentum transfer approximately zero could also have been included in our Hamil- 
tonian. The n --+ x results are, however, unaffected by such an interaction.) g ,  and g ,  
will be taken to be of order l/n. In this way three possible generalized interactions arise 
as shown in figure 1. It is easy to see that in cases (a), (b) and (c) closed loops of the 
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Figure 1. Generalized elementary vertices. Full line (broken line) indicates an electron 
propagating with momentum near + k ,  ( -  k F ) .  In process (a) the number of electrons of 
component index i is not conserved. In the limit of large n (a) enhances Cooper pair 
formation, (b) selects diagrams giving rise to a density wave of momentum 2 k ,  and (c) favours 
spin density wave-type diagrams. The corresponding characteristic ‘logarithmic bubbles’ 
are shown beneath. 
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Let us define the generalized susceptibility characteristic of Cooper pair formation 
by the analytic continuation to the upper w half-plane of 

where wv = 2nvT (v  = integer). Let us take, for the sake of simplicity, g, = g, g 
( = g / n )  in equation (1). The graphs contributing to xC are shown in figure 2. These can 

Figure 2. Diagrams contributing to the generalized pair susceptibility in leading order in n. 

be summed easily in the usual way with the result to logarithmic accuracy 

In xlnv 
1 -@/nu) In x 

f (x)  = - (3) 

where x = max{(kBT/wD), (w/wD), (kulw,)) and U is the Fermi velocity. The two other 
generalized susceptibilities, characterizing the density wave and spin density wave type 
responses of the system, 

will not get enhanced by the interaction depicted in figure l(a) in leading order in n. 
For k = w = 0, the static pair susceptibility is obtained from equation (3) as 

XC - (T -  T , ) - I  

kBT, = wD exp( - T C U / [ ~ ~ ) .  

with 

(4) 
This is exact in the n -+ cc limit and shows a superconducting-type phase transition 
at T,. 

Below T,  the Green function equations of Gorkov (1958) are exact for the model 
in question in the n -+ cc limit and the quantity 
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where Fi is the anomalous Green function defined in terms of the ith component of the 
particle operators and satisfies the same gap equation as the corresponding quantity 
does for n = 1 in the BCS approximation with T,  given by equation (4). As a result, 
the Ginzburg-Landau free energy functional of the problem 

F [ Y ( r ) ]  = dr( a)YI2 +)bJYI4+c - lT12) 
looks formally like the free energy functional of the n = 1 problem. The order parameter 
Y is proportional to A. The coefficients a, b and c are of order n. Moreover, equation (6), 
evaluated with the equilibrium value of Y ,  is exact for temperatures near the critical 
temperature in the n + cc limit. 

3. The effect of fluctuations for finite n 

For finite n equation (6 )  may be considered as an approximate expression with the help 
of which fluctuation effects can be accounted for. In particular, the order parameter- 
order parameter correlation function G can be obtained for the present case generalizing 
the result of Rice (1965) in a straightforward manner ( R  = Ir, -r21) 

G(R)  - ( V r i W ( r 2 ) )  'v F'Z +(Yq)- exP(-qR)I exP(-R/yYg) (7) 

where q = 5 - l  (< is the usual coherence length, t2  = c/2)aJ and y = 4c/k,T = O(n). 
Yg = -a/b being of 0(1), the second term in the parentheses, the fluctuation in the 
absolute value of the order parameter, is of O(l/n) relative to the first one and thus 
vanishes in the limit n + CO for all R. As to the factor coming from the phase fluctua- 
tions one has to be careful in what order the limits n .+ 00 and R .+ CO are performed. 
If we take for fixed R the limit n + CO (case A), we get 

exp( - R/yYZ) + 1. 

Thus in case A the previous result concerning the exactness of F[Y',] in the n + x limit 
is recovered, On the other hand, for any large but finite n we have in the R -+ x limit 
(case B )  

It is tempting to conclude that, as all fluctuations vanish in the n -+ x limit, there is 
a phase transition in the sense of ODLRO and the phase transition is described exactly 
by mean-field theory. For any finite n, however, the phase fluctuations suppress the 
off-diagonal long-range order. Nevertheless, according to equation (7), a quasi-off- 
diagonal long-range order persists and extends to distances increasing with n as deter- 
mined by the phase fluctuation coherence length yYg = O(n). As to a l/n expansion 
around the n + cc limit, effects connected with k values lying in the range 0 < k < l /n  
cannot be accounted for by it and thus it can clearly not be used to find the correct 
answer as to ODLRO. This is also reflected by the behaviour of the order.parameter 
renormalized by  phase fluctuations 

exp( - R/yY;)  + 0. 

('y> = Yo exP[-(2/Y%L) l/k21 (8) 
k 

in the above two types of limiting cases. If we take kmin - l /n  < 1/L in the summation, 
corresponding to case A, C l /k2  - Ln is obtained and Ln cancels from the exponent, 
then ( Y )  is finite. On the other hand, taking the thermodynamic limit first (case B), 
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(Y) = 0 is obtained. In order to  arrive at a form similar to equation (8) all orders of 
l /n have to be summed up; the first few terms are wholly misleading. 

4. Discussion 

As to the Bogolyubov (1970) inequality and Hohenberg’s (1967) argument concerning 
the impossibility of a superconducting type order in one dimension, it has to be noted 
first that our generalization does not affect the validity of the $sum rule provided the 
sum of the densities of momentum k ,  pk = Zipki  is used in the definition. (The total 
number of particles N = Xi & Xa uAiuki commutes with the Hamiltonian.) The 
inequality exploited by Hohenberg (1967) is 

where C and x denote correlation function and response function respectively. In the 
present case the choice 

where S(q)  is a smearing function leads to x A + A  - nk2, xAB - A ;  C B E + ,  however, cannot 
be related either to the density correlation function or to any other physical quantity 
for which the integral over k remains finite for large n and thus equation (9) is useless. 
On the other hand, if B = Bi is chosen, xAB - X 4  S(q)ak,fia,Ji, which is proportional 
to Ai,  the ith summand in equation (5) ,  and C,,+(k)  can be related to the density correla- 
tion function of the ith component. Equation (9) can then be analysed analogously to 
the original n = 1 case with the only difference being in a factor of l/n, (coming from 
x ~ + ~ ) ,  which appears on its right-hand side. Performing the limit n + cc before the 
thermodynamic limit (case A)  leads to the vanishing of the right hand side of equation 
(9) and thus the Ai can be finite in this limiting case. 

It is interesting to compare the behaviour of the n-component fermion field (com- 
ponent index attached to the fermion operators) to the n-component classical (Ginzburg- 
Landau) field (component index attached to the order parameter) in the n -+ CG limit 
(Imry and Scalapino 1974). The common feature is that a quasi-phase transition 
becomes a true phase transition in this limit and this takes place in a nonanalytic way 
in n-’. There is, however, a significant difference, namely that the phase transition in 
the n + oc limit is of first order for the classical field (Imry and Scalapino 1974), while 
it is of second order in the present case. 

Finally let us note that the above considerations apply also for the interactions (b)  
and (c) of figure 1 with the only difference being in the nature of the phase transition 
for n + CO and in the consequent difference in the definition of the order parameter. 

Treatment of the problem in the framework of the renormalization group method 
will be given elsewhere. 
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